Semilinear integro-differential equations in Hilbert space
نویسندگان
چکیده
منابع مشابه
The existence result of a fuzzy implicit integro-differential equation in semilinear Banach space
In this paper, the existence and uniqueness of the solution of a nonlinear fully fuzzy implicit integro-differential equation arising in the field of fluid mechanics is investigated. First, an equivalency lemma is presented by which the problem understudy is converted to the two different forms of integral equation depending on the kind of differentiability of the solution. Then...
متن کاملOptimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces
Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...
متن کاملControl Problems for Semilinear Neutral Differential Equations in Hilbert Spaces
We construct some results on the regularity of solutions and the approximate controllability for neutral functional differential equations with unbounded principal operators in Hilbert spaces. In order to establish the controllability of the neutral equations, we first consider the existence and regularity of solutions of the neutral control system by using fractional power of operators and the...
متن کاملOption Pricing in Hilbert Space-Valued Jump-Diffusion Models Using Partial Integro-Differential Equations
Hilbert space-valued jump-diffusion models are employed for various markets and derivatives. Examples include swaptions, which depend on continuous forward curves, and basket options on stocks. Usually, no analytical pricing formulas are available for such products. Numerical methods, on the other hand, suffer from exponentially increasing computational effort with increasing dimension of the p...
متن کاملControllability of Stochastic Semilinear Functional Differential Equations in Hilbert Spaces
In this paper approximate and exact controllability for semilinear stochastic functional differential equations in Hilbert spaces is studied. Sufficient conditions are established for each of these types of controllability. The results are obtained by using the Banach fixed point theorem. Applications to stochastic heat equation are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1979
ISSN: 0022-247X
DOI: 10.1016/0022-247x(79)90036-2